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Abstract 
 

Backtracking is necessary when design alternatives 
are explored or dead ends are reached. Unfortunately, 
current approaches support chronological 
backtracking only (undo or version control), where the 
designer is forced to undo intermittent changes even if 
they are not related to what should be backtracked. 
This work introduces an approach for selective 
backtracking during software modeling where 
previously discarded design changes are recovered 
without having to undo intermittent changes. Selective 
backtracking is a challenge because during multi-view 
modeling, we must understand how changes across 
multiple views are connected – in order to undo them 
together and thus avoid undesired inconsistencies. Our 
approach automatically discovers dependencies 
among design changes and is thus able to guide the 
designer during selective backtracking.  

 
1. Introduction  

Software modeling emphasizes separation of 
concerns [1] through different views (e.g. structural, 
behavioral, scenarios) [2]. While each view is 
described separately, these views are dependent on one 
another in that changes to one view can affect others. 
Figure 1 shows a simplified video-on-demand system 
and two of its views: a class and a sequence diagram. 
Both views are captured and understood separately. 
However, the messages in the sequence diagram 
should refer to methods declared in the class diagram. 
Such dependencies among views are typically explored 
through the help of consistency rules [3]. Rules that 
express dependencies among views are typically 
reusable across different application domains. 

The downside of most modeling languages is that 
they are designed to define solutions only and do not 
have constructs for remembering the changes made 
along the way (the design history [4]). However, 
changes matter [5] and designers often desire to 

backtrack the design: for example when dead ends are 
reached, multiple design alternatives are explored (i.e., 
with the implicit understanding of backtracking to 
undo the alternative if it was not satisfactory), or 
simply to recover something that was previously 
discarded. Remembering changes is also important for 
understanding design decisions that have led to a 
specific solution. 

 

 
Figure 1. Dependencies among Views 

 

Selective backtracking allows designers to undo 
specific changes in the past without necessarily having 
to undo the many intermittent changes made thereafter. 
Selective backtracking almost always affects multiple 
model elements which need to be backtracked as a 
logical group to minimize inconsistencies. For 
example, backtracking the class diagram to a version 
where the method stream() did not exist also requires 
the backtracking of the sequence diagram to a version 
where the message stream did not exist – or else the 
backtracking would cause an inconsistency.  

There are a range of existing solutions on how to 
deal with backtracking. Most modeling tools provide 
undo mechanisms but they force designers to undo 
changes chronologically. Versioning mechanisms 
(CVS or Subversion) do not solve this problem either. 
Versioning mechanisms do allow parts of the model, 
even individual model elements, to be versioned 
separately. However, the real complexity of selective 
backtracking is in understanding how the undoing of 
one model element affects others.   

Our work provides a technique for selective 
backtracking that automatically discovers 



dependencies among design changes to guide the 
designer. The designer chooses what model element(s) 
and versions to backtrack. The technique then informs 
the designer of other model elements that should be 
backtracked also to minimize inconsistencies caused. 
2. Problem and Illustrative Example 
Figure 2 illustrates selective backtracking on two 
versions of the video-on-demand system. Version 1 
represents an early design snapshot (it is identical with 
Figure 1). Version 2 represents a later design snapshot. 
We see that the designer made several changes: (1) the 
streamer no longer calls drawPicture() on the display 
and the display now pulls the pictures to draw from the 
streamer (getPicture), (2) there is thus no longer a 
need for a bi-directional relationship between the 
Streamer and the Display class, and (3) a connect() 
method was added to class Streamer including a 
corresponding message in the sequence diagram. 

Imagine that the pulling mechanism for getting 
pictures (display calling getPicture()) is no longer 
desired. Instead, the designer desires to recover the 
discarded pushing mechanism used in version 1 
(streamer calling drawPicture()). The designer thus 
desires to backtrack the design history to eliminate 
getPicture and replace it with drawPicture. If the 
designer does not want to loose all intermittent 
changes such as the addition of connect() in Streamer 
and its corresponding message in the sequence 
diagram then a chronological backtracking is not 
desirable. Neither may it be desirable to manually “re-
discover” what it takes to add the missing message in 
the sequence diagram. Indeed, the simple replacement 
of the getPicture message with the drawPicture 
message causes two inconsistencies because there is no 
drawPicture() method in Display and the message call 
from streamer to display would violate the uni-
directional calling relationship between their classes. 

Inconsistencies caused during backtracking thus 
help us discover logical dependencies among model 
elements. This is intuitive since consistency rules 
describe conditions that a model must satisfy for it to 
be considered a valid model. Table 1 describes the two 
consistency rules used above more formally. 

 

Table 1. Sample Consistency Rules 

Rule 
1 

Name of message must be declared in method 
operations=message.receiver.base.methods 
return(methods->name->contains(message.name)) 

Rule 
2 

Calling direction of object must match class  
in=object.base.incomingAssociations 
out=object.incomingMessages->sender.base.  
                                               outgoingAssociations
return (in.intersectedWith(out)<>{}) 

 

Consistency rule 1 states that the name of a message 
must match an operation in the receiver’s class. If this 
rule is evaluated on message stream in version 2 of the 
sequence diagram then it first computes all methods of 
the message’s receiver class. The receiver of the 
stream message is the object streamer of type (i.e, base 
in UML) Streamer and the class’ methods are stream(), 
connect(), and getPicture(). The consistency rule is 
satisfied (i.e., consistent) because the set of method 
names in Streamer contains the one with the name 
stream – the name of the message. Consistency rule 2 
then validates whether the calling direction indicated in 
the class diagram matches the calling direction of the 
messages in the sequence diagram.  
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Figure 2. Two Versions of a Video on Demand System 

 

3. Selective Backtracking Approach 
Our approach monitors the designer and records 

design changes in a design history. The design history 
maintains the changes of each model element and field 
separately – thus allowing a designer to select arbitrary 
versions of model elements for backtracking. We 
presume that the designer initiates the backtracking by 
choosing what version(s) for what model element(s) to 
recover. For example, the designer way want to replace 
the existing getPicture() message with a now-deleted 
drawPicture() message in the sequence diagram. This 
implies two designer-invoked changes: the deletion of 
getPicture and the re-creation of the previously deleted 
drawPicture message in its place.  

The approach thus automatically creates, modifies, 
or deletes the model element(s) selected for 
backtracking according to Table 2. If the model 
element was deleted but should be recovered then the 



element must be re-created and modified to reflect the 
desired state (version) – as with the message 
drawPicture. If the element still exists (was not 
deleted) but should be eliminated then the element 
must be deleted – as with getPicture. Or, if an earlier 
state of an existing element should be recovered then 
the element must be modified.  

 

Table 2. Backtracking Effects on Model Elements 

 eliminate 
element 

recover earlier 
element state 

element still exists delete modify 
element was deleted - create+modify 

 

This simple algorithm, however, does not cover the 
problematic situation where the deletion, creation, or 
modification of model elements causes inconsistencies. 
Inconsistencies during backtracking reveal logical 
dependencies that must be addressed. For this purpose, 
this paper uses the UML/Analyzer tool [3] for the 
instant consistency checking of design models. The 
tool helps designers in detecting and tracking 
inconsistencies and it does so correctly and quickly 
with every design change (i.e., a backtracking step is 
essentially a design change). What is novel about the 
UML/Analyzer approach is that it treats every 
evaluation of a consistency rule separately. We speak 
of constraint instances. For example, consistency rule 
1 in Table 1 must be evaluated three times in version 2 
of Figure 2 – once for every message. The 
UML/Analyzer approach thus maintains three 
constraint instances: we call them C1_connect, 
C1_stream, and C1_getPicture. All three constraint 
instances are evaluated separately as they may differ in 
their findings (although all are currently consistent).  

Backtracking affects model elements which, in turn, 
affect the consistency of constraint instances. The 
changes caused during backtracking thus trigger re-
evaluations of constraint instances. For this purpose, 
the UML/Analyzer approach automatically maintains a 
change impact scope that reveals how model changes 
trigger re-evaluations of constraint instances. With the 
creation and deletion of model elements, constraint 
instances must also be instantiated or disposed. This is 
also already implemented. The details of the approach 
are discussed in [3, 6] and omitted here.  

When backtracking the drawPicture message (to a 
version in which it existed) and the getPicture message 
(to a version in which it did not exist), the 
UML/Analyzer approach automatically recognizes that 
the constraint instance C1_getPicture becomes 
obsolete and a constraint instance C1_drawPicture 
must be instantiated. This new constraint instance is 
inconsistent because there is no method in the current 

version 2 of the class diagram with a matching name 
(no such method was yet recovered from version 1). In 
addition, the UML/Analyzer approach recognizes that 
an existing constraint instance, namely C2_display, 
must be re-evaluated. C2_display is an instantiation for 
consistency rule 2 on the sequence object display. Its 
task is to ensure that messages arriving at display do 
not violate the calling relationship imposed in the class 
diagram. This constraint instance was previously 
consistent (all messages where invocations from 
display onto streamer as allowed in the class diagram); 
however, with the recovery of the drawPicture 
message, this constraint instance becomes inconsistent 
because drawPicture is an invocation from streamer 
onto display which is not allowed with the uni-
directional relationship in the class diagram.  

 

Table 3. Backtracking Effects on Constraint Instances 

constraint 
instances 

after 
consistent inconsistent disposed 

b
ef

or
e 

 
consistent no problem problem no problem

inconsistent no problem no problem no problem
disposed no problem problem no problem

 

Our approach reacts to inconsistencies caused 
during backtracking. The goal is simply to avoid them. 
Table 3 reveals that a constraint instance is 
problematic if it was consistent before backtracking 
but no longer is after backtracking (as with 
C2_display); or if the backtracking causes the 
instantiation of a constraint instance that is then 
inconsistent (as with C1_drawPicture). Both cases 
imply that the backtracking was incomplete and other 
model elements must be changed also. 

In order to narrow down the search for these other 
model elements, our approach investigates the change 
impact scopes of the problematic inconsistencies (we 
mentioned above that this scope is automatically 
computed to understand which constraint instances to 
re-evaluate if a model element changes). Our finding is 
that in order to fix the inconsistencies caused by 
backtracking we simply have to backtrack some of the 
model elements in their respective change impact 
scopes until a consistent state is found (if any). 
Fortunately, the change impact scope is conservative 
and thus contains all model elements needed for 
further backtracking. Moreover, empirical studies have 
shown that the scope stays small [3].  

The change impact scope is determined by 
observing the run-time behavior of consistency rules 
during their evaluation. To this end, the 
UML/Analyzer approach incorporates the equivalent 
of a model profiler for consistency checking which 
lists all model elements accessed during evaluation. 



For example, the evaluation of the problematic 
constraint instance C1_drawPicture accesses the 
message drawPicture first, then the message’s receiver 
object streamer, its base class Streamer, and finally the 
methods stream(), connect(), and getPicture() (recall 
earlier). The change impact scope of C1_drawPicture 
is thus {drawPicture, streamer, Streamer, stream(), 
connect(), getPicture()}. 

Our approach investigates each problematic 
inconsistency. For each inconsistency, it locates the 
change impact scope elements and identifies which 
combinations of model element versions have existed 
during the lifespan of the model element being 
backtracked. For example, for C2_display we find that 
class Display was different in version 1 (note: class 
Streamer was also different but it was not in the 
change impact scope of C2_display). To investigate 
whether the older version of Display resolves the 
inconsistency, we simply recover its version and re-
evaluate all affected constraint instances. Since the 
older version of Display is consistent, we suggest it to 
the designer. Each such exploration of an 
inconsistency thus identifies zero, one, or more 
combinations on how to resolve the inconsistency 
(zero implies no solution).  

The backtracking algorithm is in fact much more 
sophisticated than can be described in this short paper. 
We have a built-in notion of minimal backtracking. 
Also, while the backtracking is explored for each 
inconsistency separately, there must be an overlapping 
notion of version correctness: i.e., the backtracked 
version can only settle on a single version for each 
model element and it is illegal to resolve two 
inconsistencies with different versions of the same 
model element. Furthermore, collections must be dealt 
with differently during backtracking than singular 
values. And, not all model elements in a change impact 
scope must be changed during backtracking. These 
details will be discussed in future publications. 

 

 
Figure 3. Automatically Suggested Backtracking Solution 

Figure 3 depicts the result of the backtracking of 
getPicture and drawPicture. The backtracked version 

contains the recovered message drawPicture, its 
method, and the bi-directional relationship – without 
losing intermittent changes such as message connect. 

 
4. Conclusion  

This paper discussed an approach for selective 
backtracking of design changes. As we have seen, 
selective backtracking is a difficult problem because of 
the complex, logical dependencies among design 
changes. We solved this problem by automatically 
discovering dependencies via the UML/Analyzer 
consistency checking approach – where 
inconsistencies and their fixes reveal the dependencies 
in question. The approach was evaluated on smaller 
samples thus far. The next steps are a more 
comprehensive evaluation in context of several larger 
models (based on models we used in [3]) and the 
empirical analysis of the scalability factors. We believe 
that selective backtracking is vital to software 
engineering. Current solutions are highly inadequate – 
mainly because they fail to reveal dependencies among 
changes in the change history which are so important 
for backtracking. We have thus much to learn by 
“mining” change histories [7]. 
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