
Selective Backtracking of Model Changes

Iris Groher and Alexander Egyed
Johannes Kepler University

Institute for Systems Engineering and Automation (SEA)
{iris.groher, alexander.egyed}@jku.at

Abstract

Backtracking is necessary when design alternatives
are explored or dead ends are reached. Unfortunately,
current approaches support chronological
backtracking only (undo or version control), where the
designer is forced to undo intermittent changes even if
they are not related to what should be backtracked.
This work introduces an approach for selective
backtracking during software modeling where
previously discarded design changes are recovered
without having to undo intermittent changes. Selective
backtracking is a challenge because during multi-view
modeling, we must understand how changes across
multiple views are connected – in order to undo them
together and thus avoid undesired inconsistencies. Our
approach automatically discovers dependencies
among design changes and is thus able to guide the
designer during selective backtracking.

1. Introduction

Software modeling emphasizes separation of
concerns [1] through different views (e.g. structural,
behavioral, scenarios) [2]. While each view is
described separately, these views are dependent on one
another in that changes to one view can affect others.
Figure 1 shows a simplified video-on-demand system
and two of its views: a class and a sequence diagram.
Both views are captured and understood separately.
However, the messages in the sequence diagram
should refer to methods declared in the class diagram.
Such dependencies among views are typically explored
through the help of consistency rules [3]. Rules that
express dependencies among views are typically
reusable across different application domains.

The downside of most modeling languages is that
they are designed to define solutions only and do not
have constructs for remembering the changes made
along the way (the design history [4]). However,
changes matter [5] and designers often desire to

backtrack the design: for example when dead ends are
reached, multiple design alternatives are explored (i.e.,
with the implicit understanding of backtracking to
undo the alternative if it was not satisfactory), or
simply to recover something that was previously
discarded. Remembering changes is also important for
understanding design decisions that have led to a
specific solution.

Figure 1. Dependencies among Views

Selective backtracking allows designers to undo
specific changes in the past without necessarily having
to undo the many intermittent changes made thereafter.
Selective backtracking almost always affects multiple
model elements which need to be backtracked as a
logical group to minimize inconsistencies. For
example, backtracking the class diagram to a version
where the method stream() did not exist also requires
the backtracking of the sequence diagram to a version
where the message stream did not exist – or else the
backtracking would cause an inconsistency.

There are a range of existing solutions on how to
deal with backtracking. Most modeling tools provide
undo mechanisms but they force designers to undo
changes chronologically. Versioning mechanisms
(CVS or Subversion) do not solve this problem either.
Versioning mechanisms do allow parts of the model,
even individual model elements, to be versioned
separately. However, the real complexity of selective
backtracking is in understanding how the undoing of
one model element affects others.

Our work provides a technique for selective
backtracking that automatically discovers

dependencies among design changes to guide the
designer. The designer chooses what model element(s)
and versions to backtrack. The technique then informs
the designer of other model elements that should be
backtracked also to minimize inconsistencies caused.
2. Problem and Illustrative Example
Figure 2 illustrates selective backtracking on two
versions of the video-on-demand system. Version 1
represents an early design snapshot (it is identical with
Figure 1). Version 2 represents a later design snapshot.
We see that the designer made several changes: (1) the
streamer no longer calls drawPicture() on the display
and the display now pulls the pictures to draw from the
streamer (getPicture), (2) there is thus no longer a
need for a bi-directional relationship between the
Streamer and the Display class, and (3) a connect()
method was added to class Streamer including a
corresponding message in the sequence diagram.

Imagine that the pulling mechanism for getting
pictures (display calling getPicture()) is no longer
desired. Instead, the designer desires to recover the
discarded pushing mechanism used in version 1
(streamer calling drawPicture()). The designer thus
desires to backtrack the design history to eliminate
getPicture and replace it with drawPicture. If the
designer does not want to loose all intermittent
changes such as the addition of connect() in Streamer
and its corresponding message in the sequence
diagram then a chronological backtracking is not
desirable. Neither may it be desirable to manually “re-
discover” what it takes to add the missing message in
the sequence diagram. Indeed, the simple replacement
of the getPicture message with the drawPicture
message causes two inconsistencies because there is no
drawPicture() method in Display and the message call
from streamer to display would violate the uni-
directional calling relationship between their classes.

Inconsistencies caused during backtracking thus
help us discover logical dependencies among model
elements. This is intuitive since consistency rules
describe conditions that a model must satisfy for it to
be considered a valid model. Table 1 describes the two
consistency rules used above more formally.

Table 1. Sample Consistency Rules

Rule
1

Name of message must be declared in method
operations=message.receiver.base.methods
return(methods->name->contains(message.name))

Rule
2

Calling direction of object must match class
in=object.base.incomingAssociations
out=object.incomingMessages->sender.base.
 outgoingAssociations
return (in.intersectedWith(out)<>{})

Consistency rule 1 states that the name of a message
must match an operation in the receiver’s class. If this
rule is evaluated on message stream in version 2 of the
sequence diagram then it first computes all methods of
the message’s receiver class. The receiver of the
stream message is the object streamer of type (i.e, base
in UML) Streamer and the class’ methods are stream(),
connect(), and getPicture(). The consistency rule is
satisfied (i.e., consistent) because the set of method
names in Streamer contains the one with the name
stream – the name of the message. Consistency rule 2
then validates whether the calling direction indicated in
the class diagram matches the calling direction of the
messages in the sequence diagram.

+stream()

Streamer

+drawPicture()

Display

display streamer

Structural view Scenario view

drawPicture()

stream()

Version 1

+stream()
+connect()
+getPicture()

Streamer

Structural view

display streamer

Scenario view

connect()

stream()

Version 2

getPicture
Display

Figure 2. Two Versions of a Video on Demand System

3. Selective Backtracking Approach
Our approach monitors the designer and records

design changes in a design history. The design history
maintains the changes of each model element and field
separately – thus allowing a designer to select arbitrary
versions of model elements for backtracking. We
presume that the designer initiates the backtracking by
choosing what version(s) for what model element(s) to
recover. For example, the designer way want to replace
the existing getPicture() message with a now-deleted
drawPicture() message in the sequence diagram. This
implies two designer-invoked changes: the deletion of
getPicture and the re-creation of the previously deleted
drawPicture message in its place.

The approach thus automatically creates, modifies,
or deletes the model element(s) selected for
backtracking according to Table 2. If the model
element was deleted but should be recovered then the

element must be re-created and modified to reflect the
desired state (version) – as with the message
drawPicture. If the element still exists (was not
deleted) but should be eliminated then the element
must be deleted – as with getPicture. Or, if an earlier
state of an existing element should be recovered then
the element must be modified.

Table 2. Backtracking Effects on Model Elements

 eliminate
element

recover earlier
element state

element still exists delete modify
element was deleted - create+modify

This simple algorithm, however, does not cover the
problematic situation where the deletion, creation, or
modification of model elements causes inconsistencies.
Inconsistencies during backtracking reveal logical
dependencies that must be addressed. For this purpose,
this paper uses the UML/Analyzer tool [3] for the
instant consistency checking of design models. The
tool helps designers in detecting and tracking
inconsistencies and it does so correctly and quickly
with every design change (i.e., a backtracking step is
essentially a design change). What is novel about the
UML/Analyzer approach is that it treats every
evaluation of a consistency rule separately. We speak
of constraint instances. For example, consistency rule
1 in Table 1 must be evaluated three times in version 2
of Figure 2 – once for every message. The
UML/Analyzer approach thus maintains three
constraint instances: we call them C1_connect,
C1_stream, and C1_getPicture. All three constraint
instances are evaluated separately as they may differ in
their findings (although all are currently consistent).

Backtracking affects model elements which, in turn,
affect the consistency of constraint instances. The
changes caused during backtracking thus trigger re-
evaluations of constraint instances. For this purpose,
the UML/Analyzer approach automatically maintains a
change impact scope that reveals how model changes
trigger re-evaluations of constraint instances. With the
creation and deletion of model elements, constraint
instances must also be instantiated or disposed. This is
also already implemented. The details of the approach
are discussed in [3, 6] and omitted here.

When backtracking the drawPicture message (to a
version in which it existed) and the getPicture message
(to a version in which it did not exist), the
UML/Analyzer approach automatically recognizes that
the constraint instance C1_getPicture becomes
obsolete and a constraint instance C1_drawPicture
must be instantiated. This new constraint instance is
inconsistent because there is no method in the current

version 2 of the class diagram with a matching name
(no such method was yet recovered from version 1). In
addition, the UML/Analyzer approach recognizes that
an existing constraint instance, namely C2_display,
must be re-evaluated. C2_display is an instantiation for
consistency rule 2 on the sequence object display. Its
task is to ensure that messages arriving at display do
not violate the calling relationship imposed in the class
diagram. This constraint instance was previously
consistent (all messages where invocations from
display onto streamer as allowed in the class diagram);
however, with the recovery of the drawPicture
message, this constraint instance becomes inconsistent
because drawPicture is an invocation from streamer
onto display which is not allowed with the uni-
directional relationship in the class diagram.

Table 3. Backtracking Effects on Constraint Instances

constraint
instances

after
consistent inconsistent disposed

b
ef

or
e

consistent no problem problem no problem

inconsistent no problem no problem no problem
disposed no problem problem no problem

Our approach reacts to inconsistencies caused
during backtracking. The goal is simply to avoid them.
Table 3 reveals that a constraint instance is
problematic if it was consistent before backtracking
but no longer is after backtracking (as with
C2_display); or if the backtracking causes the
instantiation of a constraint instance that is then
inconsistent (as with C1_drawPicture). Both cases
imply that the backtracking was incomplete and other
model elements must be changed also.

In order to narrow down the search for these other
model elements, our approach investigates the change
impact scopes of the problematic inconsistencies (we
mentioned above that this scope is automatically
computed to understand which constraint instances to
re-evaluate if a model element changes). Our finding is
that in order to fix the inconsistencies caused by
backtracking we simply have to backtrack some of the
model elements in their respective change impact
scopes until a consistent state is found (if any).
Fortunately, the change impact scope is conservative
and thus contains all model elements needed for
further backtracking. Moreover, empirical studies have
shown that the scope stays small [3].

The change impact scope is determined by
observing the run-time behavior of consistency rules
during their evaluation. To this end, the
UML/Analyzer approach incorporates the equivalent
of a model profiler for consistency checking which
lists all model elements accessed during evaluation.

For example, the evaluation of the problematic
constraint instance C1_drawPicture accesses the
message drawPicture first, then the message’s receiver
object streamer, its base class Streamer, and finally the
methods stream(), connect(), and getPicture() (recall
earlier). The change impact scope of C1_drawPicture
is thus {drawPicture, streamer, Streamer, stream(),
connect(), getPicture()}.

Our approach investigates each problematic
inconsistency. For each inconsistency, it locates the
change impact scope elements and identifies which
combinations of model element versions have existed
during the lifespan of the model element being
backtracked. For example, for C2_display we find that
class Display was different in version 1 (note: class
Streamer was also different but it was not in the
change impact scope of C2_display). To investigate
whether the older version of Display resolves the
inconsistency, we simply recover its version and re-
evaluate all affected constraint instances. Since the
older version of Display is consistent, we suggest it to
the designer. Each such exploration of an
inconsistency thus identifies zero, one, or more
combinations on how to resolve the inconsistency
(zero implies no solution).

The backtracking algorithm is in fact much more
sophisticated than can be described in this short paper.
We have a built-in notion of minimal backtracking.
Also, while the backtracking is explored for each
inconsistency separately, there must be an overlapping
notion of version correctness: i.e., the backtracked
version can only settle on a single version for each
model element and it is illegal to resolve two
inconsistencies with different versions of the same
model element. Furthermore, collections must be dealt
with differently during backtracking than singular
values. And, not all model elements in a change impact
scope must be changed during backtracking. These
details will be discussed in future publications.

Figure 3. Automatically Suggested Backtracking Solution

Figure 3 depicts the result of the backtracking of
getPicture and drawPicture. The backtracked version

contains the recovered message drawPicture, its
method, and the bi-directional relationship – without
losing intermittent changes such as message connect.

4. Conclusion

This paper discussed an approach for selective
backtracking of design changes. As we have seen,
selective backtracking is a difficult problem because of
the complex, logical dependencies among design
changes. We solved this problem by automatically
discovering dependencies via the UML/Analyzer
consistency checking approach – where
inconsistencies and their fixes reveal the dependencies
in question. The approach was evaluated on smaller
samples thus far. The next steps are a more
comprehensive evaluation in context of several larger
models (based on models we used in [3]) and the
empirical analysis of the scalability factors. We believe
that selective backtracking is vital to software
engineering. Current solutions are highly inadequate –
mainly because they fail to reveal dependencies among
changes in the change history which are so important
for backtracking. We have thus much to learn by
“mining” change histories [7].

5. Acknowledgement
This research was funded by the Austrian FWF under
agreement P21321-N15.

6. References
[1] D. L. Parnas, "On the Criteria to be Used in

Decomposing Systems into Modules," Communication
of the ACM vol. 15, pp. 1053-1058, 1972.

[2] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein,
and M. Goedicke, "Viewpoints: A Framework for
Integrating Multiple Perspectives in System
Development," International Journal on Software
Engineering and Knowledge Engineering pp. 31-58,
1991.

[3] A. Egyed, "Instant Consistency Checking for the
UML," presented at Proceedings of the International
Conference on Software Engineering (ICSE) 2006.

[4] H. Gall, "Of Changes and their History: Some Ideas for
Future IDEs," in Proceedings of the 2008 15th Working
Conference on Reverse Engineering - Volume 00: IEEE
Computer Society, 2008.

[5] R. Robbes and M. Lanza, "A Change-based Approach
to Software Evolution," Electronic Notes in Theoretical
Computer Science, vol. 166, pp. 93–109, 2007.

[6] A. Egyed, "Fixing Inconsistencies in UML Design
Models," presented at Proceedings of the International
Conference on Software Engineering 2007.

[7] N. Nagappan, T. Ball, and A. Zeller, "Mining metrics to
predict component failures," presented at 28th
International Conference on Software Engineering,
Shanghai, China, 2006.

